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Overview
Humans can use parts of their arms other than the hands for manipulations
like holding a baby and closing doors, which we refer to as whole-arm
manipulations. This approach is more complex than typical manipulation
using only end-effectors. In this paper, we use this challenging scenario as an
illustration and introduce a novel toolkit to facilitate effortless robot
demonstration collection for imitation learning, even enabling data collection
in unstructured environments without the need for a physical robot.

AirExo: An Open-Source, Portable, Adaptable, 
Inexpensive and Robust Exoskeleton
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Fig. 1. The methodology of our in-the-wild learning framework with
low-cost exoskeletons AirExo. It empowers the human operator to not
only control the robots for collecting teleoperated demonstrations but
also directly record human demonstrations in the wild. Our framework
leverages both demonstrations in policy learning, resulting in a more
general and robust policy compared to training with even more
teleoperated demonstrations. 

In-the-Wild Learning Framework

With AirExo, the human operator can perform accurate teleoperation of the
robot intuitively. Moreover, the portability and the one-to-one joint mapping
property of AirExo allows human operator to collect demonstrations in the
wild at scale, without needing a robot.

Fig. 2. AirExo models for different types of robots. Notice that the
internal structure of the joints is standardized, only the linkages are
altered to accommodate different robotic arm configurations.

Fig. 3. Overview of learning whole-arm manipulations in the wild with 
AirExo. First, we use in-the-wild demonstrations and exoskeleton 
actions that are transformed into the robot’s domain to pre-train the 
policy, which corresponds to learning the high-level strategy of task 
execution. Then, we use teleoperated demonstrations and robot actions 
to fine-tune the policy, which corresponds to learning fine-grained 
motion based on the learned high-level strategy.
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Fig. 4. Results of the “Gather Balls” task.

Tab. I. Results of the “Grasp from the Curtained Shelf” task.

Tab. II. Results of the robustness experiments 
on the “Grasp from the Curtained Shelf” task. airexo.github.io
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